Collagen XI chain misassembly in cartilage of the chondrodysplasia (cho) mouse.
نویسندگان
چکیده
Molecular mechanisms controlling the assembly of cartilage-specific types II, IX and XI collagens into a heteropolymeric network of uniformly thin, unbanded fibrils are not well understood, but collagen XI has been implicated. The present study on cartilage from the homozygous chondrodysplasia (cho/cho) mouse adds support to this concept. In the absence of alpha1(XI) collagen chains, thick, banded collagen fibrils are formed in the extracellular matrix of cho/cho cartilage. A functional knock-out of the type XI collagen molecule has been assumed. We have re-examined this at the protein level to see if, rather than a complete knock-out, alternative type XI chain assemblies were formed. Mass spectrometry of purified triple-helical collagen from the rib cartilage of cho/cho mice identified alpha1(V) and alpha2(XI) chains. These chains were recovered in roughly equal amounts based on Coomassie Blue staining of SDS-PAGE gels, in addition to alpha1(II)/alpha3(XI) collagen chains. Using telopeptide-specific antibodies and Western blot analysis, it was further shown that type V/XI trimers were present in the matrix cross-linked to each other and to type II collagen molecules to form heteropolymers. Cartilage from heterozygous (cho/+) mice contained a mix of alpha1(V) and alpha1(XI) chains and a mix of thin and thick fibrils on transmission electron microscopy. In summary, the results imply that native type XI collagen molecules containing an alpha1(XI) chain are required to form uniformly thin fibrils and support a role for type XI collagen as the template for the characteristic type II collagen fibril network of developing cartilage.
منابع مشابه
A fibrillar collagen gene, Col11a1, is essential for skeletal morphogenesis
Mice that are homozygous for the autosomal recessive chondrodysplasia (cho) mutation die at birth with abnormalities in cartilage of limbs, ribs, mandible, and trachea. Limb bones of newborn cho/cho mice are wider at the metaphyses than normal bones and only about half the normal length. By linkage analysis, the cho gene and the gene encoding the alpha 1 (XI) chain of cartilage collagen XI were...
متن کاملCo-Culture of Mesenchymal Stem Cells with Mature Chondrocytes: Producing Cartilage Construct for Application in Cartilage Regeneration
Background: Cell-based treatment approach using differentiated mesenchymal stem cells (MSCs) and mature chondrocytes has been considered as an advanced treatment for cartilage repair. We investigated the differentiated level of these two cell types that is crucial for their repair capacity for cartilage defect at a co-culture micro mass system. Methods: Passaged-2 MSCs isolated from the mouse b...
متن کاملA nonsense mutation in the carboxyl-terminal domain of type X collagen causes haploinsufficiency in schmid metaphyseal chondrodysplasia.
Type X collagen is a short-chain homotrimeric collagen expressed in the hypertrophic zone of calcifying cartilage. The clustering of mutations in the carboxyl-terminal NC1 domain in Schmid metaphyseal chondrodysplasia (SMCD) suggested a critical role for this type X collagen domain, but since no direct analysis of cartilage has been conducted in SMCD patients, the mechanisms of type X collagen ...
متن کاملArticular cartilage and changes in Arthritis: Collagen of articular cartilage
The extracellular framework and two-thirds of the dry mass of adult articular cartilage are polymeric collagen. Type II collagen is the principal molecular component in mammals, but collagens III, VI, IX, X, XI, XII and XIV all contribute to the mature matrix. In developing cartilage, the core fibrillar network is a cross-linked copolymer of collagens II, IX and XI. The functions of collagens I...
متن کاملCollagen of articular cartilage
The extracellular framework and two-thirds of the dry mass of adult articular cartilage are polymeric collagen. Type II collagen is the principal molecular component in mammals, but collagens III, VI, IX, X, XI, XII and XIV all contribute to the mature matrix. In developing cartilage, the core fibrillar network is a cross-linked copolymer of collagens II, IX and XI. The functions of collagens I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Matrix biology : journal of the International Society for Matrix Biology
دوره 26 8 شماره
صفحات -
تاریخ انتشار 2007